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dngt =interplanar spacing (A) 

K =  constant (A -I) 

qj = charge on the j th  ion 

r~ = distance from the ith to the j th  ion (A) 

ERFC =complement of the error function 

The magnitude of the arbitrary constant K deter- 
mines the relative convergences of the two parts of the 
formula. The larger the numerical value chosen for K 
the worse is the convergence of the first sum, and the 
better is the convergence of the second sum, and vice 
versa. In practice one has to choose a value of K which 
makes the combined number of terms in both sums a 
minimum. In order to check the results for their accur- 
acy and for possible errors the same calculation can be 
repeated with different values of K. Such check runs 
showed that the rounding errors and the neglected 
outer terms of the sums never accumulated to more 
than 1 unit of the sixth digit, i.e. the error was 10 -6 at 
most. 

The program can be requested from the author by 
interested persons. 
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On the Curves in the Greninger and Leonhardt Nets 
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The algebraic equations for the lines in both the Greninger and Leonhardt charts are derived, in order 
to complete or correct the statements found in the current literature. The meridians are conics and the 
parallels are quartics. Also, parametric equations are given for computational purposes. 

In the X-ray orientation of single crystals, two charts 
are widely used: The Greninger chart (Greninger, 1935) 
for the back-reflection Laue method and the Leonhardt 
chart (Leonhardt, 1924; Dunn & Martin, 1949) for 

* This work was supported in part by Grant AF-AFOSR 
290-63 from the U.S. Air Force Office of Scientific Research, 
during the author's tenure on a fellowship from the Del Amo 
Foundation of Los An~eles~ California. 

the transmission Laue method. The meaning and the 
use of both nets are quite well explained in the standard 
X-ray books, but, especially in the case of the Greninger 
net, some incomplete (Barrett, 1952; Guinier, 1956; 
Wood, 1963) or even wrong (Terpstra & Codd, 1961; 
Cullity, 1956; International Tables for  X-Ray Crystallo- 
graphy, 1959) statements on the geometrical nature of 
the curves of the chart are frequently made. The pur- 
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pose of this note is to set up the correct characterization 
of the curves in both charts in a unified description. 

The geometry of the Laue method is easily des- 
cribed in terms of the Bragg picture (Fig. 1). OC is the 
incident X-ray, NN' is the normal to the reflecting 
plane and CP is the reflected ray, such that 0--n/2-~o 
is the usual Bragg angle. 
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Fig. 1. The geometry of the Laue method in the plane of in- 

cidence: The back-reflection situation (~<45°).  The plane 
responsible for the spot P on the film can be identified by its 
gnomonic projection N. 
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Fig. 2. The transmission situation (tp > 45°). 
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Fig. 3. The direction of a normal as defined by two angles: 
2 (longitude) and V/(latitude). 
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Fig.4. The gnomonic net for the normals to the planes. Only 

planes with normals represented inside of the circle F, can 
give spots in the back-reflection film, 

CN being the bisector of an interior angle of the 
triangle COP we may write, taking the segments in 
absolute value: NP/ON= CP/OC or OP/ON=(OC+ 
CP)/OC. This last relation is valid only if the normal 
makes with the incident beam an angle cp<z~/4. If 
~z/4 < ~ < zc/2 the situation changes, since then P will 
be on the transmission film as shown in Fig.2. NN' is 
now the bisector of an exterior angle of the triangle 
CO'P and the second relation should be O'P/O'N'= 
(CP-O'C)/O'C. 

A Cartesian coordinate frame is selected with the 
z axis along the direction of the incident X-ray, vertical 
y axis and origin in the crystal C. The coordinates 
(x, y) of a spot P in the film and those (xN, ylv) of 
the gnomonic projection N of the normal of the re- 
flecting plane are obviously related by 

+ -0---N= if ~0<45 ° 
x y 

- - /  
XN YN O'P 

[ - ~ . . ; - i f~p>45  ° 

Combining these with the previous geometrical rela- 
tions, we obtain 

x _ y _p+l/x2+yZ+p z for ~0X45 ° (1) 
XN yN P 

where p is the distance crystal-film. Note that the 
relation (1) covers both the back-reflection and the 
transmission case. 

It is found convenient to refer to the orientation of 
the normal in terms of its co-polar and azimuthal 
angles ~u and 2 (Fig. 3), with respect to the x axis as 
polar axis. We may call them latitude and longitude 
respectively. The pencils of normals with 2 constant 
will define a meridian and those with ~, constant a 
parallel. 

By extension, the gnomonic projection of the nor- 
mals (poles) of the reflecting planes in the plane of 
the film will show lines that are simply called meridians 
and parallels. Elementary geometric considerations 
lead to the equations 

Meridians: eyN--p=O (where e - c o t  2, s - c o t  ~u) 
(2M) 

Parallels: S2X2--~N--p2=O (2P) 

which are, respectively, a straight line and a hyperbola 
(Fig.4). 

The corresponding spot P on the film produced by 
the Bragg reflected ray will describe two families of 
curves that are customarily labeled parallels (or lati- 
tude lines), and meridians in the Greninger and in 
the Leonhardt nets. Their algebraic equations are de- 
rived in a straightforward way from (2M) and (2P) 
using the relations (1). 

The meridians are: 

x2-(eZ-1)y2+ 2pey=O, (3M) 
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This is a conic" a hyperbola for 2 < n/4, a parabola for 
2 = n / 4  and a real ellipse for n/42 < n/2 (Fig. 5). In the 
Greninger chart only the branches of hyperbolae not 
passing by the origin are of interest" they correspond 
to the segments of meridians in Fig.4 interior to the 
limiting circle F. The other branch and the parabola 
and ellipses belong to the Leonhardt chart, where, 
however, they are labeled by the values of 90 ° -  2. 

For the parallels we obtain a more involved algebraic 
equation: 

(yZ _ mZxZ)Z + pZ(yZ _ sZx z) = 0 (3P) 

where m2---½(s 2 -  1)=cot  ~, cot 2~u. This curve o f  degree 
four has three biflecnodes: one at the origin with tan- 
gents y + s x = O  and two others at infinity with asymp- 
totes y+_mx+_ (½pVmT--+l)/m=O. A sketch for the 
parallel ~u = 30 ° is shown in Fig. 6. One can immediately 
identify the parts of the branches that will appear in 
both the Greninger and the Leonhardt nets. 

(3M) and (3P) are thus the correct algebraic equat- 
ions for the curves plotted in the Greninger and Leon- 
hardt charts. Since the quartic (3P) does not seem to 
be described in the classical repertory of curves (Loria, 
1930; Gomes Teixeira, 1905), I would suggest that it 
be called the 'Greninger-Leonhardt quartic'. 

Finally, and for the convenience of those that could 
want to draw these curves using a computer, I shall 
write down their parametric expressions. It is not neces- 
sary to repeat them for the meridians, as they can be 
found in many places (e.g. Jenner, 1963). 

The Greninger-Leonhardt quartic is unicursal, and 
thus the coordinates of any point of the curve can be 
expressed as a rational algebraic function of a para- 
meter (Hilton, 1932). 

Put y=l~X in the equation (3P) of the parallels and 
solve for x. Apart of the abscissae x z = 0, which cor- 
respond to the starting double point (0,0), we get 

p - lt2_ m z 

Two formal consecutive changes of parameter /z=s  
sin o9 and t=tan-}co (a well-known procedure in the 
integration of irrational functions) will rationalize this 
expression to 

x/p  =2s(1 - t4)d -1 

y/p=4sZt(1 - t z ) d  -1 (4) 

A = t 4( 1 - s z) + 2 t 2( 1 + 3S 2) 4- ( 1 - s 2) 

where no physical significance is attached to the numer- 
ical parameter t. 
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Fig. 6. Parallel ~,= 30 ° in the Oreninger and Leonhardt nets. 


